David F. Halpern, DMD, FAGD, president of the Academy of General Dentistry (AGD), testified recently during the open session of the Institute of Medicine’s (IOM) first meeting of the Committee on Oral Health Access to Services in Washington, D.C.

Halpern protested the IOM’s failure to include a single practicing dentist on the committee roster.

“Over 90 percent of all practicing dentists are in the private sector, and over 80 percent of dentists are primary care providers. For this committee to lack representation from the private sector totally deprives the study of real-world input and totally goes against the committee’s charge of reaching a balanced, objective and credible conclusion,” Halpern said.

Furthermore, Halpern expressed concern that the committee’s framework work would likely produce a one-sided result of championing the use of alternative or midlevel providers and neglecting commonsense approaches that utilize the full dental team concept to address access to care concerns.

“Those whose hands aren’t in a patient’s mouth every day, alternative delivery models look good in theory, but they are unlikely to be able to answer the question of not only whether they actually work in practice, but if they are truly also cost-effective, and not just cost-delaying,” Halpern said.

The Committee on Oral Health Access to Services is one of two new IOM committees exploring oral health policy under a contract from the Health Resources and Services Administration, an agency within the U.S. Department of Health and Human Services.

The second study committee, An Oral Health Initiative, is scheduled to hold its first meeting on March 31. Halpern is scheduled to testify again to protest the exclusion of practicing dentists on that committee and to convey concern over the study’s direction.

The AGD is a professional association of more than 35,000 general dentists dedicated to staying up to date in the profession through continuing education. (Source: AGD)

AGD testifies on access to care

Tell us what you think!

Do you have general comments or criticism you would like to share? Is there a particular topic you would like to see more articles about? Let us know by e-mailing us at feedback@dental-tribune.com. If you would like to make any change to your subscription (name, address or to opt out) please send us an e-mail at database@dental-tribune.com and be sure to include which publication you are referring to. Also, please note that subscription changes can take up to 6 weeks to process.

Standards for Green Dental Practice is the foundation of the GreenDOC program, providing comprehensive, eco-friendly initiatives in eight implementation categories. The GreenDOC Checklist is available to EDA members on the association’s Web site, located at www.ecodontistry.org/GreenDOC.

The GreenDOC Product Guide is a comprehensive dental industry listing of products and services that green dental offices need to go green and stay green. The EDA has sourced the products and services that share a vision for clean, green dentistry, making it easy for dental professionals to achieve earth-friendly initiatives.

Products and services appear in one or more of the following GreenDOC categories: sustainable location; waste reduction; pollution prevention; energy conservation; water conservation; patient care, workplace policies and community contribution; leadership; and innovation.

Combined, the GreenDOC Product Guide and GreenDOC Checklist provide dentists with the first key steps to greening their dental practice.

“To where I start and what products do I use? These are the two most common requests we receive from dental professionals,” said Susan Beck, director of the Eco-Dentistry Association.

“Used together, the GreenDOC Product Guide and Checklist make the perfect going green starter kit for dental professionals.”

Additional components of the GreenDOC Program lead dental practitioners through a rigorous but attainable certification program. GreenDOC how-to guides, action plans and worksheets make it simple for dental professionals to meet specific goals to achieve bronze, silver or gold certification.

As a part of the program’s international launch, the EDA encourages dental offices to register to be one of the first 100 certified offices and become a charter-certified office.

The EDA’s members are located in 42 U.S. states and 11 countries. The organization was co-founded by Dr. Fred Pockrass, a dentist, and his entrepreneur wife, Ina Pockrass, who together created the model for eco-friendly dentistry, and operate their own award-winning dental practice in Berkeley, Calif., recognized as the first in the country to be certified as a green business.

They formed the organization to stimulate a movement in the dental industry to employ environmental- ly sound practices, such as reducing waste and pollution; saving energy, water and money; incorporating wellness-based methods, and incorporating the best technologi cal advances in dentistry. (Source: Eco-Dentistry Association)
Plasma jets capable of obliterating tooth decay-causing bacteria could be an effective and less painful alternative to the dentist’s drill, according to a new study published in the February issue of the Journal of Medical Microbiology.

Firing low-temperature plasma beams at dentin, the fibrous tooth structure underneath the enamel coating, was found to reduce the amount of dental bacteria by up to 10,000-fold. The findings could mean plasma technology is used to remove infected tissue in tooth cavities, a practice that conventionally involves drilling into the tooth.

Scientists at the Leibniz-Institute of Surface Modifications, in Leipzig, Germany, and dentists from the Saarland University, Homburg, Germany, tested the effectiveness of plasma against common oral pathogens including Streptococcus mutans and Lactobacillus casei. These bacteria form films on the surface of teeth and are capable of eroding tooth enamel and the dentin below it to cause cavities. If left untreated this can lead to pain, tooth loss and sometimes severe gum infections.

In this study, the researchers infected dentin from extracted human molars with four strains of bacteria and then exposed it to plasma jets for six, 12 or 18 seconds. The longer the dentin was exposed to the plasma, the greater the amount of bacteria that were eliminated.

Plasmas are known as the fourth state of matter after solids, liquids and gases and have an increasing number of technical and medical applications. Plasmas are common everywhere in the cosmos and are produced when high-energy processes strip atoms of one or more of their electrons. This forms high-temperature reactive oxygen species that are capable of destroying microbes. These hot plasmas are already used to disinfect surgical instruments.

Dr. Stefan Rupf from Saarland University who led the research said that the recent development of cold plasmas that have temperatures of around 40 degrees Celsius showed great promise for use in dentistry.

“The low temperature means they can kill the microbes while preserving the tooth. The dental pulp at the center of the tooth, underneath the dentin, is linked to the blood supply and nerves, and heat damage to it must be avoided at all costs.”

Rupf said using plasma technology to disinfect tooth cavities would be welcomed by patients as well as dentists. “Drilling is a very uncomfortable and sometimes painful experience. Cold plasma, in contrast, is a completely contact-free method that is highly effective. Presently, there is huge progress being made in the field of plasma medicine and a clinical treatment for dental cavities can be expected within three to five years.”

Society for General Microbiology

The Journal of Medical Microbiology provides high-quality comprehensive coverage of medical, dental and veterinary microbiology and infectious diseases. The original paper is available on request.

The Society for General Microbiology is the largest microbiology society in Europe, and has more than 5,500 members worldwide. The society provides a common meeting ground for scientists working in research and in fields with applications in microbiology including medicine, veterinary medicine, pharmaceuticals, industry, agriculture, food, the environment and education.

(Source: Society for General Microbiology)